首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   549篇
  免费   57篇
  国内免费   1篇
  2023年   2篇
  2022年   2篇
  2021年   11篇
  2020年   9篇
  2019年   12篇
  2018年   15篇
  2017年   9篇
  2016年   13篇
  2015年   30篇
  2014年   18篇
  2013年   41篇
  2012年   37篇
  2011年   30篇
  2010年   31篇
  2009年   25篇
  2008年   49篇
  2007年   50篇
  2006年   32篇
  2005年   25篇
  2004年   29篇
  2003年   22篇
  2002年   21篇
  2001年   16篇
  2000年   13篇
  1999年   10篇
  1998年   7篇
  1997年   3篇
  1996年   5篇
  1995年   3篇
  1994年   1篇
  1992年   10篇
  1991年   4篇
  1990年   5篇
  1989年   3篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   5篇
  1983年   1篇
  1978年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有607条查询结果,搜索用时 689 毫秒
71.
Large mammals are thought to evolve to be smaller on islands, whereas small mammals grow larger. A negative correlation between relative size of island individuals and body mass is termed the "island rule." Several mechanisms--mainly competitive release, resource limitation, dispersal ability, and lighter predation pressure on islands, as well as a general physiological advantage of modal size--have been advanced to explain this pattern. We measured skulls and teeth of terrestrial members of the order Carnivora in order to analyze patterns of body size evolution between insular populations and their near mainland conspecifics. No correlations were found between the size ratios of insular/mainland carnivore species and body mass. Only little support for the island rule is found when individual populations rather than species are considered. Our data are at odds with those advanced in support of theories of optimal body size. Carnivore size is subjected to a host of selective pressures that do not vary uniformly from place to place. Mass alone cannot account for the patterns in body size of insular carnivores.  相似文献   
72.
Protein-protein interactions within the membrane, partially or fully mediated by transmembrane (TM) domains, are involved in many vital cellular processes. Since the unique feature of the membrane environment enables protein-protein assembly that otherwise is not energetically favored in solution, the structural restrictions involved in the assembly of soluble proteins are not necessarily valid for the assembly of TM domains. Here we used the N-terminal TM domain (Tar-1) of the Escherichia coli aspartate receptor as a model system for examining the stereospecificity of TM-TM interactions in vitro and in vivo in isolated systems, and in the context of the full receptor. For this propose, we synthesized Tar-1 all-l and all-d amino acid TM peptides, a mutant TM peptide and an unrelated TM peptide. The data revealed: (i) Tar-1 all-d specifically associated with Tar-1 all-l within a model lipid membrane, as determined by using fluorescence energy transfer experiments; (ii) Tar-1 all-l and all-d, but not the control peptides, demonstrated a dose-dependant dominant negative effect on the Tar-1 TM homodimerization in the bacterial ToxR assembly system, suggesting a wild-type-like interaction; and most interestingly, (iii) both Tar-1 all-l and all-d showed a remarkable ability to inhibit the chemotaxis response of the full-length receptor, in vivo. Peptide binding to the bacteria was confirmed through confocal imaging, and Western blotting confirmed that ToxR Tar-1 chimera protein levels are not affected by the presence of the exogenous peptides. These findings present the first evidence that an all-d TM domain peptide acts in vivo similarly to its parental all-l peptide and suggest that the dimerization of the TM domains is mainly mediated by side-chain interactions, rather than geometrically fitted conformations. In addition, the study provides a new approach for modifying the function of membrane proteins by proteolysis-free peptides.  相似文献   
73.
A strain of the whitefly Bemisia tabaci (Gennadius) possessing unusually high levels of resistance to a wide range of insecticides was discovered in 2004 in the course of routine resistance monitoring in Arizona. The multiply resistant insects, collected from poinsettia (Euphorbia pulcherrima Willd. ex Klotzsch) plants purchased at a retail store in Tucson, were subjected to biotype analysis in three laboratories. Polyacrylamide gel electrophoresis of naphthyl esterases and sequencing of the mitochondrial cytochrome oxidase I gene (780 bp) confirmed the first detection of the Q biotype of B. tabaci in the New World. This U.S. Q biotype strain, referred to as Poinsettia'04, was highly resistant to two selective insect growth regulators, pyriproxyfen and buprofezin, and to mixtures of fenpropathrin and acephate. It was also unusually low in susceptibility to the neonicotinoid insecticides imidacloprid, acetamiprid, and thiamethoxam, relative to B biotype whiteflies. In 100 collections of whiteflies made in Arizona cotton (Gossypium spp.), vegetable, and melon (Cucumis melo L.) fields from 2001 to 2005, no Q biotypes were detected. Regions of the United States that were severely impacted by the introduction of the B biotype of B. tabaci in the 1980s would be well advised to promote measures that limit movement of the Q biotype from controlled environments into field systems and to formulate alternatives for managing this multiply-resistant biotype, in the event that it becomes more widely distributed.  相似文献   
74.
75.
Central to our understanding of human immunodeficiency virus-induced fusion is the high resolution structure of fragments of the gp41 fusion protein folded in a low energy core conformation. However, regions fundamental to fusion, like the fusion peptide (FP), have yet to be characterized in the context of the cognate protein regardless of its conformation. Based on conformation-specific monoclonal antibody recognition, we identified the polar region consecutive to the N36 fragment as a stabilizer of trimeric coiled-coil assembly, thereby enhancing inhibitory potency. This tertiary organization is retained in the context of the hydrophobic FP (N70 fragment). Our data indicate that the N70 fragment recapitulates the expected organization of this region in the viral fusion intermediate (N-terminal half of the pre-hairpin intermediate (N-PHI)), which happens to be the prime target for fusion inhibitors. Regarding the low energy conformation, we show for the first time core formation in the context of the FP (N70 core). The alpha-helical and coiled-coil stabilizing polar region confers substantial thermal stability to the core, whereas the hydrophobic FP does not add further stability. For the two key fusion conformations, N-PHI and N70 core, we find that the FP adopts a nonhelical structure and directs higher order assembly (assembly of coiled coils in N-PHI and assembly of bundles in the N70 core). This supra-molecular organization of coiled coils or folded cores is seen only in the context of the FP. This study is the first to characterize the FP region in the context of the folded core and provides a basic understanding of the role of the elusive FP for key gp41 fusion conformations.  相似文献   
76.
There are two major energy and cost constraints to bulk production of single cell microalgae for biofuels or feed: expensive culture systems with high capital costs and high energy requirements for mixing and gas exchange; and the cost of harvesting using high-speed continuous centrifugation for dewatering. This report deals with the latter; harvesting by flocculation where theory states that alkaline flocculants neutralize the repelling surface charge of algal cells, allowing them to coalesce into a floc. It had been assumed that with such electrostatic flocculation, the more cells to be flocculated, the more flocculant needed, in a linear stoichiometric fashion, rendering flocculation overly expensive. Counter to theory of electrostatic flocculation, we find that the amount of alkaline flocculant needed is a function of the logarithm of cell density, with dense cultures requiring an order of magnitude less base than dilute suspensions, with flocculation occurring at a lower pH. Various other theories abound that flocculation can be due to multi-valent cross-linking, or co-precipitation with phosphate or with magnesium and calcium, but are clearly not relevant with the flocculants we used. Monovalent bases that cannot cross-link or precipitate phosphate work with the same log-linear stoichiometry as the divalent bases, obviating those theories, leaving electrostatic flocculation as the only tenable theory of flocculation with the materials used. The cost of flocculation of dense cultures with this procedure should be below $1.00/T algae for mixed calcium:magnesium hydroxides.  相似文献   
77.
Protein-protein interactions within the membrane are involved in many vital cellular processes. Consequently, deficient oligomerization is associated with known diseases. The interactions can be partially or fully mediated by transmembrane domains (TMD). However, in contrast to soluble regions, our knowledge of the factors that control oligomerization and recognition between the membrane-embedded domains is very limited. Due to the unique chemical and physical properties of the membrane environment, rules that apply to interactions between soluble segments are not necessarily valid within the membrane. This review summarizes our knowledge on the sequences mediating TMD-TMD interactions which include conserved motifs such as the GxxxG, QxxS, glycine and leucine zippers, and others. The review discusses the specific role of polar, charged and aromatic amino acids in the interface of the interacting TMD helices. Strategies to determine the strength, dynamics and specificities of these interactions by experimental (ToxR, TOXCAT, GALLEX and FRET) or various computational approaches (molecular dynamic simulation and bioinformatics) are summarized. Importantly, the contribution of the membrane environment to the TMD-TMD interaction is also presented. Studies utilizing exogenously added TMD peptides have been shown to influence in vivo the dimerization of intact membrane proteins involved in various diseases. The chirality independent TMD-TMD interactions allows for the design of novel short d- and l-amino acids containing TMD peptides with advanced properties. Overall these studies shed light on the role of specific amino acids in mediating the assembly of the TMDs within the membrane environment and their contribution to protein function. This article is part of a Special Issue entitled: Protein Folding in Membranes.  相似文献   
78.
The endings of sensory receptor cells often lie within specialized compartments formed by glial cells. The main sensory organ of Caenorhabditis elegans, the amphid, provides a powerful setting for studying glial compartment morphogenesis. Our previous studies showed that amphid compartment size is controlled by opposing activities of the Nemo-like kinase LIT-1, which promotes compartment expansion, and the Patched-related protein DAF-6, which restricts compartment growth. From a genetic screen for mutations able to suppress the bloated sensory compartments of daf-6 mutants, we identified an allele of the sorting nexin gene snx-1. SNX-1 protein is a component of the retromer, a protein complex that facilitates recycling of transmembrane proteins from the endosome to the Golgi network. We find that snx-1 functions cell autonomously within glia to promote sensory compartment growth, and that SNX-1 protein is enriched near the surface of the sensory compartment. snx-1 interacts genetically with lit-1 and another regulator of compartment size, the Dispatched-related gene che-14. Mutations in snx-3 and vps-29, also retromer genes, can suppress daf-6 defects. Surprisingly, however, remaining retromer components seem not to be involved. Our results suggest that a novel assembly of retromer components is important for determining sensory compartment dimensions.  相似文献   
79.
The mechanism by which cells decide to skip mitosis to become polyploid is largely undefined. Here we used a high-content image-based screen to identify small-molecule probes that induce polyploidization of megakaryocytic leukemia cells and serve as perturbagens to help understand this process. Our?study implicates five networks of kinases that?regulate the switch to polyploidy. Moreover, we find that dimethylfasudil (diMF, H-1152P) selectively increased polyploidization, mature cell-surface marker expression, and apoptosis of malignant megakaryocytes. An integrated target identification approach employing proteomic and shRNA screening revealed that a major target of diMF is Aurora kinase A (AURKA). We further find that MLN8237 (Alisertib), a selective inhibitor of AURKA, induced polyploidization and expression of mature megakaryocyte markers in acute megakaryocytic leukemia (AMKL) blasts and displayed potent anti-AMKL activity in?vivo. Our findings provide a rationale to support clinical trials of MLN8237 and other inducers of polyploidization and differentiation in AMKL.  相似文献   
80.
Winter habitat use and the magnitude of migratory connectivity are important parameters when assessing drivers of the marked declines in avian migrants. Such information is unavailable for most species. We use a stable isotope approach to assess these factors for three declining African-Eurasian migrants whose winter ecology is poorly known: wood warbler Phylloscopus sibilatrix, house martin Delichon urbicum and common swift Apus apus. Spatially segregated breeding wood warbler populations (sampled across a 800 km transect), house martins and common swifts (sampled across a 3,500 km transect) exhibited statistically identical intra-specific carbon and nitrogen isotope ratios in winter grown feathers. Such patterns are compatible with a high degree of migratory connectivity, but could arise if species use isotopically similar resources at different locations. Wood warbler carbon isotope ratios are more depleted than typical for African-Eurasian migrants and are compatible with use of moist lowland forest. The very limited variance in these ratios indicates specialisation on isotopically restricted resources, which may drive the similarity in wood warbler populations' stable isotope ratios and increase susceptibility to environmental change within its wintering grounds. House martins were previously considered to primarily use moist montane forest during the winter, but this seems unlikely given the enriched nature of their carbon isotope ratios. House martins use a narrower isotopic range of resources than the common swift, indicative of increased specialisation or a relatively limited wintering range; both factors could increase house martins' vulnerability to environmental change. The marked variance in isotope ratios within each common swift population contributes to the lack of population specific signatures and indicates that the species is less vulnerable to environmental change in sub-Saharan Africa than our other focal species. Our findings demonstrate how stable isotope research can contribute to understanding avian migrants' winter ecology and conservation status.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号